Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jia-Geng Liu, Duan-Jun Xu* and Yuan-Zhi Xu

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.047$
$w R$ factor $=0.108$
Data-to-parameter ratio $=18.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(2,2'-diamino-4,4'-bi-1,3-thiazoleN, N^{\prime})(dichloro)cobalt(II) dihydrate

The crystal structure of the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~S}_{2}\right)_{2}-\right.$ $\left.\mathrm{Cl}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, comprises an octahedral $\mathrm{Co}^{\mathrm{II}}$ complex and water of crystallization. Two Cl atoms and two diaminobithiazole (DABT) ligands coordinate to the $\mathrm{Co}^{\mathrm{II}}$ atom in a cis configuration. The overlapped arrangement and the short separation of 3.46 (2) Å between parallel DABT rings suggest the existence of $\pi-\pi$ stacking interactions. A short $\mathrm{S} \cdots \mathrm{S}$ contact of 3.1822 (17) \AA is observed between DABT ligands.

Comment

Metal complexes with 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT) have been shown to have potential applications in various fields. For example, a $\mathrm{Co}^{\mathrm{II}}$ complex and a $\mathrm{Ni}^{\mathrm{II}}$ complex with DABT have been found to be effective inhibitors of DNA synthesis of tumor cells (Waring, 1981; Fisher et al., 1985). As part of a series of structural investigations of metal complexes with DABT, the title $\mathrm{Co}^{\mathrm{II}}$ complex, (I), was prepared in our laboratory.

The molecular structure of (I) is shown in Fig. 1. While two Cl atoms are cis coordinated to the $\mathrm{Co}^{\mathrm{II}}$ atom, two DABT ligands chelate to the $\mathrm{Co}^{\mathrm{II}}$ atom to form a distorted octahedral coordination geometry (Table 1). The $\mathrm{Co}-\mathrm{Cl} 1$ distance of 2.4994 (11) and the $\mathrm{Co}-\mathrm{Cl} 2$ distance of 2.4998 (11) \AA are similar to those $[2.469(3)$ and $2.499(3) \AA]$ found in $\mathrm{Co}(\mathrm{DABT})_{2} \mathrm{Cl}_{2}$ methanol solvate (Tian et al., 1996). The distances between the amino- N and thiazole- C atoms, ranging from 1.327 (5) to 1.343 (5) \AA, suggest electron delocalization between the thiazole rings and the amino groups, whereas the bond distances of 1.455 (5) and 1.457 (5) \AA imply that both $\mathrm{C} 3-\mathrm{C} 4$ and $\mathrm{C} 9-\mathrm{C} 10$ are single bonds formed by $s p^{2}$-hybridized C atoms.

A hydrogen-bonding network occurs in the crystal. The amino groups are involved in intramolecular hydrogen bonds, both with coordinated thiazole-N atoms and with coordinated Cl atoms, as shown in Fig. 1. The amino groups are also hydrogen-bonded to water or to Cl atoms of neighboring molecules. Solvent water molecules play the roles of both donor and acceptor in the hydrogen-bonding network (Table 2).

Received 28 August 2003

Accepted 4 September 2003
Online 11 September 2003

Figure 1

The molecular structure of (I), with 30% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.

Figure 2
A molecular packing diagram. The dashed line indicates the short contact between S atoms [symmetry code: (vi) $1-x, 1-y, 1-z$].

Figure 3

A view of the $\pi-\pi$ stacking between BADT rings [symmetry code: (vii) $2-x, 1-y, 1-z]$.

A $\pi-\pi$ stacking interaction occurs in the crystal. The parallel arrangement of DABT rings is illustrated in Fig. 2. Bithiazole rings related by an inversion center overlap each other, as shown in Fig. 3. The separation between neighboring parallel thiazole rings is $3.46(2) \AA$. A short contact of
3.1822 (17) \AA is observed between atoms S 2 and $\mathrm{S}^{\text {vi }}$ [symmetry code (vi): $1-x, 1-y, 1-z$] (Fig. 2).

Experimental

Good quality crystals of DABT were obtained using the method of Erlenmeyer (1948). Crystals of the title complex were obtained by a solution diffusion method, using an H -shaped glass tube. Solutions of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and DABT were introduced into the two branches of the H tube. Pink single crystals of the title compound were obtained after 3 weeks.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~S}_{2}\right)_{2} \mathrm{Cl}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=562.44$
Monoclinic, $P 2_{1} / c$
$a=10.8616$ (12) \AA
$b=13.6096$ (15) \AA
$c=15.0657$ (17) \AA
$\beta=106.282(12)^{\circ}$
$V=2137.7$ (4) \AA^{3}
$Z=4$
$D_{x}=1.748 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 10880 reflections
$\theta=2.5-24.0^{\circ}$
$\mu=1.47 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, pink
$0.28 \times 0.22 \times 0.18 \mathrm{~mm}$

Data collection

Bruker SMART CCD
diffractometer
4872 independent reflections
2794 reflections with $I>2 \sigma(I)$
ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.660, T_{\text {max }}=0.765$
13046 measured reflections
$\theta_{\text {max }}=27.5^{\circ}$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-13 \rightarrow 14$
$k=-17 \rightarrow 10$

Refinement

Refinement on F^{2}
H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.108$
$S=0.86$
4872 reflections
262 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0453 P)^{2}\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.88 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.78 \mathrm{e}^{-3}$

Table 1
Selected interatomic distances (A).

$\mathrm{Co}-\mathrm{N} 4$	$2.128(3)$	$\mathrm{Co}-\mathrm{Cl} 2$	$2.4998(11)$
$\mathrm{Co}-\mathrm{N} 1$	$2.137(3)$	$\mathrm{N} 5-\mathrm{C} 1$	$1.340(5)$
$\mathrm{Co}-\mathrm{N} 2$	$2.155(3)$	$\mathrm{N} 6-\mathrm{C} 6$	$1.338(5)$
$\mathrm{Co}-\mathrm{N} 3$	$2.188(3)$	$\mathrm{N} 7-\mathrm{C} 7$	$1.343(5)$
$\mathrm{Co}-\mathrm{Cl} 1$	$2.4994(11)$	$\mathrm{N} 8-\mathrm{C} 12$	$1.327(5)$

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1$	0.96	2.27	$3.228(3)$	172
$\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{O} 2^{\mathrm{i}}$	0.95	1.96	$2.823(4)$	150
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 2$	0.86	2.43	$3.153(3)$	142
$\mathrm{~N} 5-\mathrm{H} 5 A \cdots \mathrm{O} 1^{\text {ii }}$	0.87	2.12	$2.905(4)$	149
$\mathrm{~N} 5-\mathrm{H} 5 B \cdots \mathrm{Cl} 2$	0.96	2.36	$3.275(3)$	160
$\mathrm{~N} 6-\mathrm{H} 6 A \cdots \mathrm{Cl} 1^{\mathrm{iii}}$	0.94	2.52	$3.364(3)$	150
$\mathrm{~N} 6-\mathrm{H} 6 A \cdots \mathrm{Cl} 2^{\text {iii }}$	0.94	2.78	$3.419(3)$	126
$\mathrm{~N} 6-\mathrm{H} 6 B \cdots \mathrm{~N} 4$	0.90	2.30	$3.137(5)$	155
$\mathrm{~N} 7-\mathrm{H} 7 A \cdots \mathrm{Cl} 2^{\text {iv }}$	0.97	2.45	$3.386(4)$	164
$\mathrm{~N} 7-\mathrm{H} 7 B \cdots \mathrm{~N} 1$	0.96	2.41	$3.217(5)$	141
$\mathrm{~N} 8-\mathrm{H} 8 A \cdots \mathrm{O} 2^{v}$	0.90	2.09	$2.972(5)$	169
$\mathrm{~N} 8-\mathrm{H} 8 B \cdots \mathrm{Cl} 1$	0.90	2.29	$3.142(4)$	157

Symmetry codes: (i) $x-1, y, z$; (ii) $1-x, 1-y,-z$; (iii) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (iv) $2-x, \frac{1}{2}+y, \frac{1}{2}-z$; (v) $2-x, y-\frac{1}{2}, \frac{1}{2}-z$.

metal-organic papers

H atoms on water and amino groups were located in a difference Fourier map and were included in the structure-factors calculation with fixed positional parameters and $U_{\text {iso }}$ of $0.05 \AA^{2}$. Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=$ $0.86 \AA$, and included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the parent atoms.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The project was supported by the National Natural Science Foundation of China (29973036 and 20240430654). The
authors thank Dr Chen-Hsiung Hung for assistance with the data collection.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Bruker (1999). SADABS (Version 2.0), SAINT (Version 6.02) and SMART
(Version 5.6). Bruker AXS Inc., Madison, Wisconsin, USA.
Erlenmeyer, H. (1948). Helv. Chim. Acta, 31, 206-210.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Fisher, L. M., Kurod, R. \& Sakai, T. (1985). Biochem. 24, 3199-3207.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Tian, Y., Yang, F. \& Wang, H. (1996). Polyhedron, 15, 2771-2776.
Waring, M. J. (1981). Ann. Rev. Biochem. 50, 159-192.

